Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            For more than 60 years, the International Atomic Energy Agency (IAEA) has promoted the peaceful use of nuclear science and technology for addressing major socioeconomic and sustainable development priorities at national, regional, and interregional levels. The Agency’s Technical Cooperation (TC) Programme is the primary mechanism for transferring nuclear and related technologies to its Member States, helping them to address their priorities in a variety of areas such as health and nutrition, food and agriculture, water and the environment, industrial applications, and, of course, the safe and secure use of nuclear energy. Here, we briefly describe the types of TC Programme projects that promote the sustainable development of coastal countries and the mechanisms IAEA uses to identify and support the projects. We highlight two of these projects.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Ocean acidification (OA), an alteration of seawater chemistry caused primarily by anthropogenic carbon emissions, is a global issue. However, the local expression of OA can vary widely in nearshore waters around the world. This is due to localized factors such as river input, eutrophication, topography, location (e.g., temperature), and sensitivity of local species. Human impacts from OA also vary depending on societal uses of the ocean and its resources. Managers, policymakers, and governments need to understand the status and susceptibility of their regions in order to make effective decisions and drive policy. In the early 2000s, scientists recognized the need for a global ocean acidification observing system and called for a coordinated approach to effectively assess global as well as local status with consistent methods. As a result, the Global Ocean Acidification Observing Network (GOA-ON) was formed in 2012 with three goals: (1) to improve understanding of global OA conditions, (2) to improve understanding of ecosystem responses to OA, and (3) to acquire and exchange data and knowledge necessary to optimize modeling of OA and its impacts (Newton et al., 2015; Tilbrook et al., 2019).more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Addressing global challenges such as climate change requires large-scale collective actions, but such actions are hindered by the complexity and scale of the problem and the uncertainty in the long-term benefit of short-term actions (Jagers et al., 2019). In addition to climate change, socio-ecological systems face the cumulative pressures associated with resource needs, technology development, industrial expansion, and area conflicts. In marine systems, this has been called “the blue acceleration” (Jouffray et al., 2020) and is referred to as “socio-ecological pressures” in this paper. These socio-ecological pressures reduce our ability to reach the UN Sustainable Development Goals and meet the challenges of the UN Ocean Decade, and require integrating knowledge within a shared conceptual framework. For example, achieving sustainable growth must integrate ecological, socioeconomic, and governance perspectives on a larger scale by considering ecological impacts, ecosystem carrying capacities, economic trade-offs, social acceptability, and policy realities. This requires capacity development whereby actors unite to bridge disciplinary boundaries to meet challenges of complex systems.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Ocean acidification (OA) is broadly recognized as a major problem for marine ecosystems worldwide, with follow-on effects to the economies of ocean-dependent communities. The urgent need to mitigate and minimize the impacts of OA is a scientific and political priority, as highlighted by the latest Intergovernmental Panel on Climate Change report (IPCC, 2022) and by the inclusion of OA as a target in the United Nations Sustainable Development Goals (SDG). In addition, over 20 years of strong scientific evidence on the impacts of OA provides compelling arguments for urgent CO2 mitigation. Reducing CO2 emissions will require ambitious regulatory and economic instruments, as well as effective systemic changes across governments and societies. It is critical to implement adaptation measures to minimize the impact of OA, among other key environmental stressors, as the mitigation process takes time, and the impacts of OA are already felt globally. Assessing the impacts of solutions and their potential implementations requires information at local scales, considering the variabilities in marine ecosystem responses to OA (e.g., local adaptation, species redundancies).more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Recent marine heatwaves in the Gulf of Alaska have had devastating impacts on species from various trophic levels. Due to climate change, total heat exposure in the upper ocean has become longer, more intense, more frequent, and more likely to happen at the same time as other environmental extremes. The combination of multiple environmental extremes can exacerbate the response of sensitive marine organisms. Our hindcast simulation provides the first indication that more than 20% of the bottom water of the Gulf of Alaska continental shelf was exposed to quadruple heat, positive hydrogen ion concentration [H+], negative aragonite saturation state (Ωarag), and negative oxygen concentration [O2] compound extreme events during the 2018–2020 marine heat wave. Natural intrusion of deep and acidified water combined with the marine heat wave triggered the first occurrence of these events in 2019. During the 2013–2016 marine heat wave, surface waters were already exposed to widespread marine heat and positive [H+] compound extreme events due to the temperature effect on the [H+]. We introduce a new Gulf of Alaska Downwelling Index (GOADI) with short‐term predictive skill, which can serve as indicator of past and near‐future positive [H+], negative Ωarag, and negative [O2] compound extreme events near the shelf seafloor. Our results suggest that the marine heat waves may have not been the sole environmental stressor that led to the observed ecosystem impacts and warrant a closer look at existing in situ inorganic carbon and other environmental data in combination with biological observations and model output.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
